Two-Stage Data Augmentation for Low-Resourced Speech Recognition

نویسندگان

  • William Hartmann
  • Tim Ng
  • Roger Hsiao
  • Stavros Tsakalidis
  • Richard M. Schwartz
چکیده

Low resourced languages suffer from limited training data and resources. Data augmentation is a common approach to increasing the amount of training data. Additional data is synthesized by manipulating the original data with a variety of methods. Unlike most previous work that focuses on a single technique, we combine multiple, complementary augmentation approaches. The first stage adds noise and perturbs the speed of additional copies of the original audio. The data is further augmented in a second stage, where a novel fMLLR-based augmentation is applied to bottleneck features to further improve performance. A reduction in word error rate is demonstrated on four languages from the IARPA Babel program. We present an analysis exploring why these techniques are beneficial.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards automatic cross-lingual acoustic modelling applied to HMM-based speech synthesis for under-resourced languages

Nowadays Human Computer Interaction (HCI) can also be achieved with voice user interfaces (VUIs). To enable devices to communicate with humans by speech in the user’s own language, low-cost language portability is often discussed and analysed. One of the most time-consuming parts for the language-adaptation process of VUIcapable applications is the target-language speech-data acquisition. Such ...

متن کامل

Under-resourced speech recognition based on the speech manifold

Conventional acoustic modeling involves estimating many parameters to effectively model feature distributions. The sparseness of speech and text data, however, degrades the reliability of the estimation process and makes speech recognition a challenging task. In this paper, we propose to use a nonlinear feature transformation based on the speech manifold called Intrinsic Spectral Analysis (ISA)...

متن کامل

Language Model Data Augmentation for Keyword Spotting in Low-Resourced Training Conditions

This research extends our earlier work on using machine translation (MT) and word-based recurrent neural networks to augment language model training data for keyword search in conversational Cantonese speech. MT-based data augmentation is applied to two language pairs: English-Lithuanian and English-Amharic. Using filtered N-best MT hypotheses for language modeling is found to perform better th...

متن کامل

Data augmentation for low resource languages

Recently there has been interest in the approaches for training speech recognition systems for languages with limited resources. Under the IARPA Babel program such resources have been provided for a range of languages to support this research area. This paper examines a particular form of approach, data augmentation, that can be applied to these situations. Data augmentation schemes aim to incr...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016